
scrypt: A key derivation function

Doing our best to thwart TLAs armed with ASICs

Colin Percival
Tarsnap

cperciva@tarsnap.com

December 4, 2012

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

What are key derivation functions?

You have a password.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

What are key derivation functions?

You have a password.

You want a generate a derived key from that password.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

What are key derivation functions?

You have a password.

You want a generate a derived key from that password.

Verifying passwords for user authentication.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

What are key derivation functions?

You have a password.

You want a generate a derived key from that password.

Verifying passwords for user authentication.
Encrypting or signing files.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

What are key derivation functions?

You have a password.

You want a generate a derived key from that password.

Verifying passwords for user authentication.
Encrypting or signing files.

In most situations where passwords are used, they are passed
to a key derivation function first.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

What are key derivation functions?

You have a password.

You want a generate a derived key from that password.

Verifying passwords for user authentication.
Encrypting or signing files.

In most situations where passwords are used, they are passed
to a key derivation function first.

In most situations where key derivation functions aren’t used,
they should be!

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

What are key derivation functions?

You have a password.

You want a generate a derived key from that password.

Verifying passwords for user authentication.
Encrypting or signing files.

In most situations where passwords are used, they are passed
to a key derivation function first.

In most situations where key derivation functions aren’t used,
they should be!

Examples of key derivation functions:

DES CRYPT [R. Morris, 1979]
MD5 CRYPT [P. H. Kamp, 1994]
bcrypt [N. Provos and D. Mazières, 1999]
PBKDF2 [B. Kaliski, 2000]
MD5 (not designed to be a key derivation function!)

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Security of key derivation functions

Attack model: Assume that the attacker can mount an offline
attack.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Security of key derivation functions

Attack model: Assume that the attacker can mount an offline
attack.

Attacker has access to /etc/master.passwd and wants to
find the users’ passwords.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Security of key derivation functions

Attack model: Assume that the attacker can mount an offline
attack.

Attacker has access to /etc/master.passwd and wants to
find the users’ passwords.
Attacker has an encrypted file and wants to decrypt it.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Security of key derivation functions

Attack model: Assume that the attacker can mount an offline
attack.

Attacker has access to /etc/master.passwd and wants to
find the users’ passwords.
Attacker has an encrypted file and wants to decrypt it.

For strong key derivation functions, the only feasible attack is
to repeatedly try passwords until you find the right one.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Security of key derivation functions

Attack model: Assume that the attacker can mount an offline
attack.

Attacker has access to /etc/master.passwd and wants to
find the users’ passwords.
Attacker has an encrypted file and wants to decrypt it.

For strong key derivation functions, the only feasible attack is
to repeatedly try passwords until you find the right one.

Also known as a “brute force” attack.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Security of key derivation functions

Attack model: Assume that the attacker can mount an offline
attack.

Attacker has access to /etc/master.passwd and wants to
find the users’ passwords.
Attacker has an encrypted file and wants to decrypt it.

For strong key derivation functions, the only feasible attack is
to repeatedly try passwords until you find the right one.

Also known as a “brute force” attack.
If you can do better than brute force, the crypto is “broken”.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Security of key derivation functions

Attack model: Assume that the attacker can mount an offline
attack.

Attacker has access to /etc/master.passwd and wants to
find the users’ passwords.
Attacker has an encrypted file and wants to decrypt it.

For strong key derivation functions, the only feasible attack is
to repeatedly try passwords until you find the right one.

Also known as a “brute force” attack.
If you can do better than brute force, the crypto is “broken”.

If it takes twice as long to compute a derived key, it will take
twice as long to find the right password.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Security of key derivation functions

Attack model: Assume that the attacker can mount an offline
attack.

Attacker has access to /etc/master.passwd and wants to
find the users’ passwords.
Attacker has an encrypted file and wants to decrypt it.

For strong key derivation functions, the only feasible attack is
to repeatedly try passwords until you find the right one.

Also known as a “brute force” attack.
If you can do better than brute force, the crypto is “broken”.

If it takes twice as long to compute a derived key, it will take
twice as long to find the right password.

. . . as long as the attacker is using the same software as you.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Hardware-based brute force attacks

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Hardware-based brute force attacks

CREDIT: Randall Munroe / xkcd.com

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Hardware-based brute force attacks

The challenge of key derivation functions is to make a
brute-force attack as expensive as possible.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Hardware-based brute force attacks

The challenge of key derivation functions is to make a
brute-force attack as expensive as possible.

Since the attacker can always use the same system as you, this
really means minimizing the attacker’s advantage in computing
derived keys.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Hardware-based brute force attacks

The challenge of key derivation functions is to make a
brute-force attack as expensive as possible.

Since the attacker can always use the same system as you, this
really means minimizing the attacker’s advantage in computing
derived keys.
Usually the “good guys” are running software on
general-purpose computers.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Hardware-based brute force attacks

The challenge of key derivation functions is to make a
brute-force attack as expensive as possible.

Since the attacker can always use the same system as you, this
really means minimizing the attacker’s advantage in computing
derived keys.
Usually the “good guys” are running software on
general-purpose computers.
In the worst case (NSA), the attackers have custom-designed
ASICs.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Hardware-based brute force attacks

The challenge of key derivation functions is to make a
brute-force attack as expensive as possible.

Since the attacker can always use the same system as you, this
really means minimizing the attacker’s advantage in computing
derived keys.
Usually the “good guys” are running software on
general-purpose computers.
In the worst case (NSA), the attackers have custom-designed
ASICs.

Using ASICs, it is possible to pack many copies of a
cryptographic circuit onto a single piece of silicon.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Hardware-based brute force attacks

The challenge of key derivation functions is to make a
brute-force attack as expensive as possible.

Since the attacker can always use the same system as you, this
really means minimizing the attacker’s advantage in computing
derived keys.
Usually the “good guys” are running software on
general-purpose computers.
In the worst case (NSA), the attackers have custom-designed
ASICs.

Using ASICs, it is possible to pack many copies of a
cryptographic circuit onto a single piece of silicon.

Moore’s law: Every 18–24 months, a new generation of
semiconductor manufacturing processes makes CPUs faster.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Hardware-based brute force attacks

The challenge of key derivation functions is to make a
brute-force attack as expensive as possible.

Since the attacker can always use the same system as you, this
really means minimizing the attacker’s advantage in computing
derived keys.
Usually the “good guys” are running software on
general-purpose computers.
In the worst case (NSA), the attackers have custom-designed
ASICs.

Using ASICs, it is possible to pack many copies of a
cryptographic circuit onto a single piece of silicon.

Moore’s law: Every 18–24 months, a new generation of
semiconductor manufacturing processes makes CPUs faster.

. . . password-cracking ASICs get faster AND can fit more
copies of a password-cracking circuit.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Hardware brute-force attack cost

The cost of a hardware brute-force attack is measured in
dollar-seconds.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Hardware brute-force attack cost

The cost of a hardware brute-force attack is measured in
dollar-seconds.

Password cracking is embarrassingly parallel, so if you use
twice as much hardware you can crack the key in half the time.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Hardware brute-force attack cost

The cost of a hardware brute-force attack is measured in
dollar-seconds.

Password cracking is embarrassingly parallel, so if you use
twice as much hardware you can crack the key in half the time.

Cost of ASICs ≍ size of ASICs.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Hardware brute-force attack cost

The cost of a hardware brute-force attack is measured in
dollar-seconds.

Password cracking is embarrassingly parallel, so if you use
twice as much hardware you can crack the key in half the time.

Cost of ASICs ≍ size of ASICs.

A strong key derivation function is one which can only be
computed by using a large circuit for a long time.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Hardware brute-force attack cost

The cost of a hardware brute-force attack is measured in
dollar-seconds.

Password cracking is embarrassingly parallel, so if you use
twice as much hardware you can crack the key in half the time.

Cost of ASICs ≍ size of ASICs.

A strong key derivation function is one which can only be
computed by using a large circuit for a long time.

J. Kelsey, B. Schneier, C. Hall and D. Wagner, 1998: Use
“32-bit arithmetic and moderately large amounts of RAM”.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Hardware brute-force attack cost

The cost of a hardware brute-force attack is measured in
dollar-seconds.

Password cracking is embarrassingly parallel, so if you use
twice as much hardware you can crack the key in half the time.

Cost of ASICs ≍ size of ASICs.

A strong key derivation function is one which can only be
computed by using a large circuit for a long time.

J. Kelsey, B. Schneier, C. Hall and D. Wagner, 1998: Use
“32-bit arithmetic and moderately large amounts of RAM”.

An example of a “moderately large amount of RAM”: 1 kB.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Hardware brute-force attack cost

The cost of a hardware brute-force attack is measured in
dollar-seconds.

Password cracking is embarrassingly parallel, so if you use
twice as much hardware you can crack the key in half the time.

Cost of ASICs ≍ size of ASICs.

A strong key derivation function is one which can only be
computed by using a large circuit for a long time.

J. Kelsey, B. Schneier, C. Hall and D. Wagner, 1998: Use
“32-bit arithmetic and moderately large amounts of RAM”.

An example of a “moderately large amount of RAM”: 1 kB.

If we use a ridiculously large amount of RAM, hardware
attacks will be even more expensive.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Sequential memory-hard functions

Definition

A sequential memory-hard function is a function which
(a) can be computed on a Random Access Machine in T (n)
operations using S(n) = O(T (n)) memory; and
(b) cannot be computed on a Parallel Random Access Machine
with S∗(n) processors and S∗(n) space in expected time T ∗(n)
where S∗(n)T ∗(n) = O(T (n)2−x) for any x > 0.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Sequential memory-hard functions

Definition

A sequential memory-hard function is a function which
(a) can be computed on a Random Access Machine in T (n)
operations using S(n) = O(T (n)) memory; and
(b) cannot be computed on a Parallel Random Access Machine
with S∗(n) processors and S∗(n) space in expected time T ∗(n)
where S∗(n)T ∗(n) = O(T (n)2−x) for any x > 0.

Since S∗(n) is the circuit area required, this means that the
area-time product increases as roughly the square of the time
spent by the defender, assuming he doesn’t run out of RAM.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Sequential memory-hard functions

Definition

A sequential memory-hard function is a function which
(a) can be computed on a Random Access Machine in T (n)
operations using S(n) = O(T (n)) memory; and
(b) cannot be computed on a Parallel Random Access Machine
with S∗(n) processors and S∗(n) space in expected time T ∗(n)
where S∗(n)T ∗(n) = O(T (n)2−x) for any x > 0.

Since S∗(n) is the circuit area required, this means that the
area-time product increases as roughly the square of the time
spent by the defender, assuming he doesn’t run out of RAM.

Note that this does not say how that area-time product is
reached — in particular, it does not rule out using less area
and more time (“time-memory trade-off”).

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

ROMix

Algorithm (ROMix)

Given a random oracle H, an input B, and an integer parameter N,

compute

Vi = H i (B) 0 ≤ i < N

and X = HN(B), then iterate

j ← Integerify(X) mod N

X ← H(X ⊕ Vj)

N times; and output X .

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

ROMix

Algorithm (ROMix)

Given a random oracle H, an input B, and an integer parameter N,

compute

Vi = H i (B) 0 ≤ i < N

and X = HN(B), then iterate

j ← Integerify(X) mod N

X ← H(X ⊕ Vj)

N times; and output X .

The function Integerify can be any bijection from {0, 1}k to
{0 . . . 2k − 1}.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

ROMix

Algorithm (ROMix)

Given a random oracle H, an input B, and an integer parameter N,

compute

Vi = H i (B) 0 ≤ i < N

and X = HN(B), then iterate

j ← Integerify(X) mod N

X ← H(X ⊕ Vj)

N times; and output X .

The function Integerify can be any bijection from {0, 1}k to
{0 . . . 2k − 1}.

ROMix fills V with pseudorandom values, then accesses them
in a pseudorandom order.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

ROMix

Lemma

For a fixed input B, given M copies of a random oracle H which

can be simultaneously consulted in unit time, and an index of size

M, there is no algorithm which for computing Hx(B) for for a
random x ∈ {0 . . .N − 1} completes in expected time less than

N
4M+2 −

1
2 .

Proof (sketch).

Suppose an algorithm exists, and run N copies of algorithm in
parallel, one copy with each possible value of x .
We can bound the number of values Hα(B) which have been input
to oracles in the first i timesteps by (2M + 1) · (i + 1) by
considering how many different oracles are “consistent with
observations” up to that point.
The result follows (with some algebra).

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

ROMix

Theorem

The class of functions ROMix are sequential memory-hard.

Proof.

Since H is a random oracle, the values j = Integerify(X) mod N

act as random values which cannot be computed prior to each
value of X being available; and computing each Vj = H j(B) takes
(from the lemma) at least Ω(n/S∗(n)) time.
Since we iterate n times, this provides T ∗(n) = Ω(n2/S∗(n)) and
thus S∗(n)T ∗(n) = Ω(n2) 6= O(T (n)2−x) as required, since
T (n) = O(n).

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

scrypt

Turning ROMix into a key derivation function:

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

scrypt

Turning ROMix into a key derivation function:

Use PBKDF2 to convert password and salt into a bitstream.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

scrypt

Turning ROMix into a key derivation function:

Use PBKDF2 to convert password and salt into a bitstream.
Feed this bitstream to ROMix.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

scrypt

Turning ROMix into a key derivation function:

Use PBKDF2 to convert password and salt into a bitstream.
Feed this bitstream to ROMix.
Feed the output of ROMix back to PBKDF2 to generate the
derived key.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

scrypt

Turning ROMix into a key derivation function:

Use PBKDF2 to convert password and salt into a bitstream.
Feed this bitstream to ROMix.
Feed the output of ROMix back to PBKDF2 to generate the
derived key.

Since we use PBKDF2 as a one-way entropy “spreading”
function, rather than for any computational cost, we can
safely set its iteration count to 1.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

scrypt

Turning ROMix into a key derivation function:

Use PBKDF2 to convert password and salt into a bitstream.
Feed this bitstream to ROMix.
Feed the output of ROMix back to PBKDF2 to generate the
derived key.

Since we use PBKDF2 as a one-way entropy “spreading”
function, rather than for any computational cost, we can
safely set its iteration count to 1.

We use ROMix to make the computation expensive.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

scrypt

Turning ROMix into a key derivation function:

Use PBKDF2 to convert password and salt into a bitstream.
Feed this bitstream to ROMix.
Feed the output of ROMix back to PBKDF2 to generate the
derived key.

Since we use PBKDF2 as a one-way entropy “spreading”
function, rather than for any computational cost, we can
safely set its iteration count to 1.

We use ROMix to make the computation expensive.

Thanks to the “wrapping” with PBKDF2, we don’t need much
cryptographic strength from ROMix — only that it takes a
long time to compute.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Maximizing the constant factor

H doesn’t need to be a random oracle or even anything
approximating one: The only real requirement is that it must

not have any shortcuts to iteration.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Maximizing the constant factor

H doesn’t need to be a random oracle or even anything
approximating one: The only real requirement is that it must

not have any shortcuts to iteration.

Assuming there are no computational shortcuts, the cost to
compute ROMix in hardware is proportional to:

[Memory required] · [Time required]

=
TSoftware · [Size of H output]

[Time to compute H in software]
·

TSoftware · [Time to compute H in hardware]

[Time to compute H in software]

= T
2
Software

·

[Bandwidth of software H output]

[Hardware:Software speed ratio for H]

= T
2
Software

·

[Bandwidth of software H output]2

[Bandwidth of hardware H output]

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Maximizing the constant factor

H doesn’t need to be a random oracle or even anything
approximating one: The only real requirement is that it must

not have any shortcuts to iteration.

Assuming there are no computational shortcuts, the cost to
compute ROMix in hardware is proportional to:

[Memory required] · [Time required]

=
TSoftware · [Size of H output]

[Time to compute H in software]
·

TSoftware · [Time to compute H in hardware]

[Time to compute H in software]

= T
2
Software

·

[Bandwidth of software H output]

[Hardware:Software speed ratio for H]

= T
2
Software

·

[Bandwidth of software H output]2

[Bandwidth of hardware H output]

The area required to compute H is irrelevant, since the total
area used will be determined almost completely by the RAM.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Maximizing the constant factor

H Software perf. Hardware perf. Score (= SW2/HW)

SHA256 450 Mbps 1250 Mbps 160 Mbps
Blowfish 800 Mbps 1000 Mbps 640 Mbps
AES-128 1200 Mbps 40000 Mbps 36 Mbps
Salsa20/8 2000 Mbps 2000 Mbps 2000 Mbps
Keccak fast very very fast not very good

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Maximizing the constant factor

H Software perf. Hardware perf. Score (= SW2/HW)

SHA256 450 Mbps 1250 Mbps 160 Mbps
Blowfish 800 Mbps 1000 Mbps 640 Mbps
AES-128 1200 Mbps 40000 Mbps 36 Mbps
Salsa20/8 2000 Mbps 2000 Mbps 2000 Mbps
Keccak fast very very fast not very good

Software performance is based on my laptop.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Maximizing the constant factor

H Software perf. Hardware perf. Score (= SW2/HW)

SHA256 450 Mbps 1250 Mbps 160 Mbps
Blowfish 800 Mbps 1000 Mbps 640 Mbps
AES-128 1200 Mbps 40000 Mbps 36 Mbps
Salsa20/8 2000 Mbps 2000 Mbps 2000 Mbps
Keccak fast very very fast not very good

Software performance is based on my laptop.

Hardware performance is based on a 130 nm CMOS process.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Maximizing the constant factor

H Software perf. Hardware perf. Score (= SW2/HW)

SHA256 450 Mbps 1250 Mbps 160 Mbps
Blowfish 800 Mbps 1000 Mbps 640 Mbps
AES-128 1200 Mbps 40000 Mbps 36 Mbps
Salsa20/8 2000 Mbps 2000 Mbps 2000 Mbps
Keccak fast very very fast not very good

Software performance is based on my laptop.

Hardware performance is based on a 130 nm CMOS process.

I think the relative ordering of functions will still be the same
with more modern hardware.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Maximizing the constant factor

H Software perf. Hardware perf. Score (= SW2/HW)

SHA256 450 Mbps 1250 Mbps 160 Mbps
Blowfish 800 Mbps 1000 Mbps 640 Mbps
AES-128 1200 Mbps 40000 Mbps 36 Mbps
Salsa20/8 2000 Mbps 2000 Mbps 2000 Mbps
Keccak fast very very fast not very good

Software performance is based on my laptop.

Hardware performance is based on a 130 nm CMOS process.

I think the relative ordering of functions will still be the same
with more modern hardware.
If there’s a cryptographer in the audience working for a
semiconductor company, I’d love to have more modern data...

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Maximizing the constant factor

Using a cryptographic primitive H directly turns out to yield
poor performance in software due to CPU architecture issues.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Maximizing the constant factor

Using a cryptographic primitive H directly turns out to yield
poor performance in software due to CPU architecture issues.

Accessing a random 64-byte value from a 1 GB block of RAM
takes about as long as computing Salsa20/8.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Maximizing the constant factor

Using a cryptographic primitive H directly turns out to yield
poor performance in software due to CPU architecture issues.

Accessing a random 64-byte value from a 1 GB block of RAM
takes about as long as computing Salsa20/8.

Every random access causes a TLB miss.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Maximizing the constant factor

Using a cryptographic primitive H directly turns out to yield
poor performance in software due to CPU architecture issues.

Accessing a random 64-byte value from a 1 GB block of RAM
takes about as long as computing Salsa20/8.

Every random access causes a TLB miss.

To work around this, scrypt accesses data in 1 kB blocks.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Maximizing the constant factor

Using a cryptographic primitive H directly turns out to yield
poor performance in software due to CPU architecture issues.

Accessing a random 64-byte value from a 1 GB block of RAM
takes about as long as computing Salsa20/8.

Every random access causes a TLB miss.

To work around this, scrypt accesses data in 1 kB blocks.

We compute Yi = H(Yi−1 ⊕ Xi).

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Maximizing the constant factor

Using a cryptographic primitive H directly turns out to yield
poor performance in software due to CPU architecture issues.

Accessing a random 64-byte value from a 1 GB block of RAM
takes about as long as computing Salsa20/8.

Every random access causes a TLB miss.

To work around this, scrypt accesses data in 1 kB blocks.

We compute Yi = H(Yi−1 ⊕ Xi).
Output is Y0,Y2, . . . ,Y14,Y1,Y3, . . . ,Y15.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Maximizing the constant factor

Using a cryptographic primitive H directly turns out to yield
poor performance in software due to CPU architecture issues.

Accessing a random 64-byte value from a 1 GB block of RAM
takes about as long as computing Salsa20/8.

Every random access causes a TLB miss.

To work around this, scrypt accesses data in 1 kB blocks.

We compute Yi = H(Yi−1 ⊕ Xi).
Output is Y0,Y2, . . . ,Y14,Y1,Y3, . . . ,Y15.
The “chained” computation ensures that there is no
opportunity for parallelism.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Maximizing the constant factor

Using a cryptographic primitive H directly turns out to yield
poor performance in software due to CPU architecture issues.

Accessing a random 64-byte value from a 1 GB block of RAM
takes about as long as computing Salsa20/8.

Every random access causes a TLB miss.

To work around this, scrypt accesses data in 1 kB blocks.

We compute Yi = H(Yi−1 ⊕ Xi).
Output is Y0,Y2, . . . ,Y14,Y1,Y3, . . . ,Y15.
The “chained” computation ensures that there is no
opportunity for parallelism.
The permuting of outputs avoids any “pipelining” of multiple
hash computations.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Maximizing the constant factor

Using a cryptographic primitive H directly turns out to yield
poor performance in software due to CPU architecture issues.

Accessing a random 64-byte value from a 1 GB block of RAM
takes about as long as computing Salsa20/8.

Every random access causes a TLB miss.

To work around this, scrypt accesses data in 1 kB blocks.

We compute Yi = H(Yi−1 ⊕ Xi).
Output is Y0,Y2, . . . ,Y14,Y1,Y3, . . . ,Y15.
The “chained” computation ensures that there is no
opportunity for parallelism.
The permuting of outputs avoids any “pipelining” of multiple
hash computations.

I believe this improves software performance more than it
improves hardware performance, but I have no proof.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Estimating hardware brute force attack costs

It’s hard to get accurate information about how much it costs
to build password-cracking machines.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Estimating hardware brute force attack costs

It’s hard to get accurate information about how much it costs
to build password-cracking machines.

Oddly enough, the NSA doesn’t publish this data.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Estimating hardware brute force attack costs

It’s hard to get accurate information about how much it costs
to build password-cracking machines.

Oddly enough, the NSA doesn’t publish this data.

The best we can do for most KDFs is to count cryptographic
operations and assume that they are responsible for most of
the time and die area.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Estimating hardware brute force attack costs

It’s hard to get accurate information about how much it costs
to build password-cracking machines.

Oddly enough, the NSA doesn’t publish this data.

The best we can do for most KDFs is to count cryptographic
operations and assume that they are responsible for most of
the time and die area.

This is probably a fairly accurate approximation, since key
derivation functions only have a very small amount of
non-cryptographic computations.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Estimating hardware brute force attack costs

It’s hard to get accurate information about how much it costs
to build password-cracking machines.

Oddly enough, the NSA doesn’t publish this data.

The best we can do for most KDFs is to count cryptographic
operations and assume that they are responsible for most of
the time and die area.

This is probably a fairly accurate approximation, since key
derivation functions only have a very small amount of
non-cryptographic computations.

For scrypt we also need to look at the die area required for
storage.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Estimating hardware brute force attack costs

Very approximate estimates of VLSI area and cost on a 130
nm process:

Each gate of random logic requires ≈ 5 µm2 of VLSI area.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Estimating hardware brute force attack costs

Very approximate estimates of VLSI area and cost on a 130
nm process:

Each gate of random logic requires ≈ 5 µm2 of VLSI area.
Each bit of SRAM requires ≈ 2.5 µm2 of VLSI area.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Estimating hardware brute force attack costs

Very approximate estimates of VLSI area and cost on a 130
nm process:

Each gate of random logic requires ≈ 5 µm2 of VLSI area.
Each bit of SRAM requires ≈ 2.5 µm2 of VLSI area.
Each bit of DRAM requires ≈ 0.1 µm2 of VLSI area.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Estimating hardware brute force attack costs

Very approximate estimates of VLSI area and cost on a 130
nm process:

Each gate of random logic requires ≈ 5 µm2 of VLSI area.
Each bit of SRAM requires ≈ 2.5 µm2 of VLSI area.
Each bit of DRAM requires ≈ 0.1 µm2 of VLSI area.
VLSI circuits cost ≈ 0.1$/mm2.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Estimating hardware brute force attack costs

Very approximate estimates of VLSI area and cost on a 130
nm process:

Each gate of random logic requires ≈ 5 µm2 of VLSI area.
Each bit of SRAM requires ≈ 2.5 µm2 of VLSI area.
Each bit of DRAM requires ≈ 0.1 µm2 of VLSI area.
VLSI circuits cost ≈ 0.1$/mm2.

These values have a very wide error margin.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Estimating hardware brute force attack costs

Very approximate estimates of VLSI area and cost on a 130
nm process:

Each gate of random logic requires ≈ 5 µm2 of VLSI area.
Each bit of SRAM requires ≈ 2.5 µm2 of VLSI area.
Each bit of DRAM requires ≈ 0.1 µm2 of VLSI area.
VLSI circuits cost ≈ 0.1$/mm2.

These values have a very wide error margin.

Non-cryptographic parts of ASICs (e.g., I/O), chip packaging,
boards, power supplies, and operating costs could increase
password-cracking costs by a factor of 10.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Estimating hardware brute force attack costs

Very approximate estimates of VLSI area and cost on a 130
nm process:

Each gate of random logic requires ≈ 5 µm2 of VLSI area.
Each bit of SRAM requires ≈ 2.5 µm2 of VLSI area.
Each bit of DRAM requires ≈ 0.1 µm2 of VLSI area.
VLSI circuits cost ≈ 0.1$/mm2.

These values have a very wide error margin.

Non-cryptographic parts of ASICs (e.g., I/O), chip packaging,
boards, power supplies, and operating costs could increase
password-cracking costs by a factor of 10.
Improvements in semiconductor technology since 2002 could
reduce password-cracking costs by a factor of 10 or more.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Estimating hardware brute force attack costs

Very approximate estimates of VLSI area and cost on a 130
nm process:

Each gate of random logic requires ≈ 5 µm2 of VLSI area.
Each bit of SRAM requires ≈ 2.5 µm2 of VLSI area.
Each bit of DRAM requires ≈ 0.1 µm2 of VLSI area.
VLSI circuits cost ≈ 0.1$/mm2.

These values have a very wide error margin.

Non-cryptographic parts of ASICs (e.g., I/O), chip packaging,
boards, power supplies, and operating costs could increase
password-cracking costs by a factor of 10.
Improvements in semiconductor technology since 2002 could
reduce password-cracking costs by a factor of 10 or more.
Improved cryptographic circuits could reduce costs by a factor
of 10.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Key derivation functions

Non-parameterized KDFs:

DES CRYPT
MD5 CRYPT
MD5

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Key derivation functions

Non-parameterized KDFs:

DES CRYPT
MD5 CRYPT
MD5

KDFs tuned for interactive logins (t ≤ 100 ms):

PBKDF2-HMAC-SHA256, c = 86000
bcrypt, cost = 11
scrypt, N = 214, r = 8, p = 1

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Key derivation functions

Non-parameterized KDFs:

DES CRYPT
MD5 CRYPT
MD5

KDFs tuned for interactive logins (t ≤ 100 ms):

PBKDF2-HMAC-SHA256, c = 86000
bcrypt, cost = 11
scrypt, N = 214, r = 8, p = 1

KDFs tuned for file encryption (t ≤ 5 s):

PBKDF2-HMAC-SHA256, c = 4300000
bcrypt, cost = 16
scrypt, N = 220, r = 8, p = 1

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Key derivation functions

Non-parameterized KDFs:

DES CRYPT
MD5 CRYPT
MD5

KDFs tuned for interactive logins (t ≤ 100 ms):

PBKDF2-HMAC-SHA256, c = 86000
bcrypt, cost = 11
scrypt, N = 214, r = 8, p = 1

KDFs tuned for file encryption (t ≤ 5 s):

PBKDF2-HMAC-SHA256, c = 4300000
bcrypt, cost = 16
scrypt, N = 220, r = 8, p = 1

Running time based on a 2.5 GHz Core 2 (aka. my laptop).

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Passwords

6 lower-case letters; e.g., “sfgroy”.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Passwords

6 lower-case letters; e.g., “sfgroy”.

8 lower-case letters; e.g., “ksuvnwyf”.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Passwords

6 lower-case letters; e.g., “sfgroy”.

8 lower-case letters; e.g., “ksuvnwyf”.

8 characters selected from the 95 printable 7-bit ASCII
characters; e.g., “6,uh3y[a”.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Passwords

6 lower-case letters; e.g., “sfgroy”.

8 lower-case letters; e.g., “ksuvnwyf”.

8 characters selected from the 95 printable 7-bit ASCII
characters; e.g., “6,uh3y[a”.

10 characters selected from the 95 printable 7-bit ASCII
characters; e.g., “H.*W8Jz&r3”.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Passwords

6 lower-case letters; e.g., “sfgroy”.

8 lower-case letters; e.g., “ksuvnwyf”.

8 characters selected from the 95 printable 7-bit ASCII
characters; e.g., “6,uh3y[a”.

10 characters selected from the 95 printable 7-bit ASCII
characters; e.g., “H.*W8Jz&r3”.

A 40-character string of text; e.g., “This is a
40-character string of English”.

Entropy estimated according to formula from NIST: 1st
character has 4 bits of entropy; 2nd–8th characters have 2 bits
of entropy each; 9th–20th characters have 1.5 bits of entropy
each; 21st and later characters have 1 bit of entropy each.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Passwords

6 lower-case letters; e.g., “sfgroy”.

8 lower-case letters; e.g., “ksuvnwyf”.

8 characters selected from the 95 printable 7-bit ASCII
characters; e.g., “6,uh3y[a”.

10 characters selected from the 95 printable 7-bit ASCII
characters; e.g., “H.*W8Jz&r3”.

A 40-character string of text; e.g., “This is a
40-character string of English”.

Entropy estimated according to formula from NIST: 1st
character has 4 bits of entropy; 2nd–8th characters have 2 bits
of entropy each; 9th–20th characters have 1.5 bits of entropy
each; 21st and later characters have 1 bit of entropy each.
This formula is not very good, but it’s the best I have
available...

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Estimated brute force attack costs

Estimated cost of hardware to crack a password in 1 year.

KDF 6 letters 8 letters 8 chars 10 chars 40-char text

DES CRYPT < $1 < $1 < $1 < $1 < $1
MD5 < $1 < $1 < $1 $1.1k $1
MD5 CRYPT < $1 < $1 $130 $1.1M $1.4k

PBKDF2 (100 ms) < $1 < $1 $18k $160M $200k
bcrypt (95 ms) < $1 $4 $130k $1.2B $1.5M
scrypt (64 ms) < $1 $150 $4.8M $43B $52M

PBKDF2 (5.0 s) < $1 $29 $920k $8.3B $10M
bcrypt (3.0 s) < $1 $130 $4.3M $39B $47M
scrypt (3.8 s) $900 $610k $19B $175T $210B

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

KDF brute force attack costs

When used for interactive logins, scrypt is . . .

≈ 25 times more expensive to attack than bcrypt,

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

KDF brute force attack costs

When used for interactive logins, scrypt is . . .

≈ 25 times more expensive to attack than bcrypt,
≈ 28 times more expensive to attack than PBKDF2,

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

KDF brute force attack costs

When used for interactive logins, scrypt is . . .

≈ 25 times more expensive to attack than bcrypt,
≈ 28 times more expensive to attack than PBKDF2,
and ≈ 215 times more expensive to attack than MD5 CRYPT.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

KDF brute force attack costs

When used for interactive logins, scrypt is . . .

≈ 25 times more expensive to attack than bcrypt,
≈ 28 times more expensive to attack than PBKDF2,
and ≈ 215 times more expensive to attack than MD5 CRYPT.

When used for file encryption, scrypt is . . .

≈ 212 times more expensive to attack than bcrypt,

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

KDF brute force attack costs

When used for interactive logins, scrypt is . . .

≈ 25 times more expensive to attack than bcrypt,
≈ 28 times more expensive to attack than PBKDF2,
and ≈ 215 times more expensive to attack than MD5 CRYPT.

When used for file encryption, scrypt is . . .

≈ 212 times more expensive to attack than bcrypt,
≈ 215 times more expensive to attack than PBKDF2,

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

KDF brute force attack costs

When used for interactive logins, scrypt is . . .

≈ 25 times more expensive to attack than bcrypt,
≈ 28 times more expensive to attack than PBKDF2,
and ≈ 215 times more expensive to attack than MD5 CRYPT.

When used for file encryption, scrypt is . . .

≈ 212 times more expensive to attack than bcrypt,
≈ 215 times more expensive to attack than PBKDF2,
and ≈ 237 times more expensive to attack than MD5.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

KDF brute force attack costs

When used for interactive logins, scrypt is . . .

≈ 25 times more expensive to attack than bcrypt,
≈ 28 times more expensive to attack than PBKDF2,
and ≈ 215 times more expensive to attack than MD5 CRYPT.

When used for file encryption, scrypt is . . .

≈ 212 times more expensive to attack than bcrypt,
≈ 215 times more expensive to attack than PBKDF2,
and ≈ 237 times more expensive to attack than MD5.

openssl enc uses MD5 as a key derivation function.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

KDF brute force attack costs

When used for interactive logins, scrypt is . . .

≈ 25 times more expensive to attack than bcrypt,
≈ 28 times more expensive to attack than PBKDF2,
and ≈ 215 times more expensive to attack than MD5 CRYPT.

When used for file encryption, scrypt is . . .

≈ 212 times more expensive to attack than bcrypt,
≈ 215 times more expensive to attack than PBKDF2,
and ≈ 237 times more expensive to attack than MD5.

openssl enc uses MD5 as a key derivation function.

OpenSSH uses MD5 as a key derivation function for
passphrases on key files.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

KDF brute force attack costs

When used for interactive logins, scrypt is . . .

≈ 25 times more expensive to attack than bcrypt,
≈ 28 times more expensive to attack than PBKDF2,
and ≈ 215 times more expensive to attack than MD5 CRYPT.

When used for file encryption, scrypt is . . .

≈ 212 times more expensive to attack than bcrypt,
≈ 215 times more expensive to attack than PBKDF2,
and ≈ 237 times more expensive to attack than MD5.

openssl enc uses MD5 as a key derivation function.

OpenSSH uses MD5 as a key derivation function for
passphrases on key files.

Are you sure that your SSH keys are safe?

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

Availability

More details at http://www.tarsnap.com/scrypt/.

Source code for scrypt.
A simple file encryption/decryption utility.
A 16-page paper.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

http://www.tarsnap.com/scrypt/

Availability

More details at http://www.tarsnap.com/scrypt/.

Source code for scrypt.
A simple file encryption/decryption utility.
A 16-page paper.

Currently an IETF Internet-Draft.

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

http://www.tarsnap.com/scrypt/

Availability

More details at http://www.tarsnap.com/scrypt/.

Source code for scrypt.
A simple file encryption/decryption utility.
A 16-page paper.

Currently an IETF Internet-Draft.

Questions?

Colin Percival Tarsnap cperciva@tarsnap.com scrypt: A key derivation function

http://www.tarsnap.com/scrypt/

