

Enhancing the Password Security with Keystroke Dynamics

Christophe Rosenberger GREYC Research Lab - France

Passwords^12

GROUPE DE RECHERCHE EN INFORMATIQUE, IMAGE, AUTOMATIQUE ET INSTRUMENTATION DE CAEN (UMR 6072)

OUTLINE

■ GREYC - E-payment & Biometrics

- User authentication
- Keystroke dynamics
- Perspectives

GREYC Research Lab

Research Group in Computer science, Automatics, Image processing and Electronics of Caen

Laboratory staff:

- 7 CNRS researchers
- 25 Full professors
- 18 Associate professors
- 48 Assistant professors
- 79 PhD students
- 17 permanent staff
- 30 Engineers and post-doc

Research topics:

- Electronics
- Image processing
- Algorithmic
- Document analysis
- Multi-agents
- Robotics navigation
- Automatics
- Computer security
- Natural language processing
- Biometrics
- Cryptography

E-payment & Biometrics

Members (30):

3 full professors, 2 associate professors, 4 assistant professors, 4 permanent engineers, 8 PhD students, 1 Post-doc, 8 engineers.

Research topics (2): Biometrics and Trust

Application: E-payment

Research projects: ASAP(ANR), LYRICS(ANR), PAY2YOU(FUI), CAPI(FUI), ADS+(FUI), INOSSEM(GE), LUCIDMAN(EUREKA)

E-payment & Biometrics

Biometrics: Operational authentication that respects the privacy of users

Biometric authentication (keystroke dynamics, fingerprint...)
Evaluation of biometric systems (performance, usability, security..)
Protection of biometrics (cancellable biometrics, smartcards...)

User authentication:

Authentication methods are based on:

- We know [Secret]
- We own [Token, smartcard, RFID tag]
- We Are [Biometrics]
- The way we do things [Behavioral biometrics]

They are called authentication factors.

Why passwords are (nearly) always used?

Choice made by the service provider (SP)

- Very convenient for the SP (very easy to verify)
- □ No need of a complex infrastructure (like OTPs)
- Nothing cheaper than a password (especially if it is stored in clear text)

Consequences

- Usability lacks: ask the user to use a "complex" password to "enhance the security of user authentication"
- Privacy issues are only considered for the specific SP

8 Best practices for user authentication with passwords

Why a static password is not a satisfying solution?

- □ Not very convenient for users having different services
- Bypass strategies permit attacks but also privacy intrusion
- No real relationship between an user and its password

Biometrics is the ONLY one user authentication method

- Password based solutions realize a risk management on user's identity
- Biometrics guarantees the strongest link between the user and its authenticator

Keystroke dynamics can be a good (operational) solution

How it works ?

11

Record different times: PP (latency between two pressures), RR (latency between two releases), RP (latency between one release and one pressure) and PR (duration of a key press),

□ Use this feature vector to measure the similarity of keystroke dynamics.

DEMO

Properties

A two authentication factor method

- \checkmark knowledge of the password
- \checkmark password typing

Good acceptance

- \checkmark invisible for a user (passphrase or password)
- \checkmark no privacy issue (easy to change the password)
- \checkmark avoid complex passwords difficult to remind
- \checkmark still a low cost solution (software based solution)
- ✓ can be used on all computers (no additional sensor)

Functions in a biometric system

Authentication with a passphrase

Proposed benchmark: GREYC Keystroke

Summary of the information provided in the subset of the database used in the experiment. The users providing answers to our questionnaire are not necessarily the ones who participated in this study.		
Information	Description	
Users	100 users	
Database sample size	6000 passphrases (60 samples per user)	
Data sample length	16 characters ('greyc laboratory')	
Typing error	Not allowed	
Controlled acquisition	Yes	
Age range	Between 19 and 56 (repartition presented in Table 6)	
Gender	Approximately 73% of males and 27% of females	
PC usage frequency	Unknown	
User profession	Students, researchers, secretaries, labourers (unknown repartition)	
Keyboard	2 AZERTY keyboards (1 laptop, 1 USB)	
Acquisition platform	Windows XP/Greyc-keystroke software	

R. Giot, M. El-Abed, and C. Rosenberger, "GREYC Keystroke: a Benchmark for Keystroke Dynamics Biometric Systems," in Proc. IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS 2009), pp. 1-6, Washington, USA, 2009

16

Performance evaluation

EER(%) value for each method when using global and individual thresholds, by using data of both keyboards and an incremental mechanism. The best EER value of each method is presented in bold.

Method	EER(global)	EER(individual)	Gains
STAT1	20.94%	19.54%	1.4%
STAT2	10.75%	9.22%	1.53%
STAT3	9.78%	8.64%	1.14%
DIST	24.65%	21.53%	3.12%
RHYTHM	13.21%	10.02%	3.18%
NEURAL	10.3%	8.75%	1.55%
CONTRIB	6.96%	6.95%	0.01%
Mean	13.8%	12.1%	1.7%

G. Romain, M. El Abed, B. Hemery, and C. Rosenberger, "Unconstrained Keystroke Dynamics Authentication with Shared Secret," Elsevier International Journal on Computers & Security, 2011.

A good candidate

To enhance the security of passwords

To profile the user: soft biometrics

This guy seems to like bones

Gender recognition:

For a specific passphrase « Greyc laboratory » ~90% (based on SVM learning)

For free text Gender recogntion: ~ **75%** for one sentence

 $\sim 80\%$ for ten sentences

 R. Giot, C. Rosenberger, "A New Soft Biometric Approach For Keystroke Dynamics Based On Gender Recognition" International Journal of Information Technology and Management (IJITM) Special Issue on :
¹⁹ "Advances and Trends in Biometrics". Dr Lidong Wang, pages 1-16, 2011.

Gender recognition: free text

Age category:

On free text: Decide if the user is over 30 years old

- ~ 70% for one sentence
- ~ 83% for ten sentences

Way of typing recognition:

22

Syed Zulkarnain Syed Idrus, Estelle Cherrier, Christophe Rosenberger and Patrick Bours, 2012, "A Preliminary Study of a New Soft Biometric Approach for Keystroke Dynamics". Poster presented at the 9th Summer School for Advanced Studies on Biometrics for Secure Authentication: Understanding Man Machine Interactions in Forensics and Security Applications Alghero, Sardinia, Italy, 2012.

An interesting biometric modality (usable, privacy compliant, low cost...)

□ Provides a better security (not perfect, does it exist ?)

Many trends have to be more studied

- Avoiding the replay attack (joint work with P. Bours)
- □ Better user's profiling
- Generalization of the keystroke dynamics for touch screens

Conclusion

Biometric pattern based password

Combining knowledge of the secret path and the way of making it (X,Y positions with time, surface in contact with time...)

Difficult to forge

Usable solution and fast

Ð	³⁶ 🖌 🚰 3:19
-	
2d	
	record
Your new	unlock pattern:
\sim	\frown
II (🔨 (+)(+)
(X)	
	$\mathcal{O}\mathcal{O}$
Cancel	Confirm
	\sim \neg .
Ú,	
	[avd 4.0.4]

http://www.epaymentbiometrics.ensicaen.fr/

