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L Mainstream symmetric crypto today
Your typical taxonomy

Symmetric crypto: what textbooks and intro’s say

Symmetric cryptographic primitives:
m Block ciphers
m Stream ciphers
m Synchronous
m Self-synchronizing
m Hash functions
m Non-keyed
m Keyed: MAC functions

And their modes-of-use
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The swiss army knife of cryptography!
. . 7
The hash function cliché

Hash functions:
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L Mainstream symmetric crypto today

Short definition

Cryptographic hash functions

m Function h
m from any binary string {0,1}*
m to a fixed-size digest {0,1}"
m One-way: given h(x) hard to find x...

[ iopucsting '

m Applications in cryptography

m Signatures: signgea(h(M)) instead of signgsa (M)
Key derivation: master key K to derived keys (K; = h(K||i))
Bit commitment, predictions: h(what | know)

[
[
m Message authentication: h(K||M)
[
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L Mainstream symmetric crypto today
Compression function and domain extension

A closer look at mainstream hash functions

m Attempts at direct design of hash function are rare
m Mainstream hash functions have two layers:

m Fixed-input-length compression function
B Iterating mode: domain extension
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L Mainstream symmetric crypto today
The mainstream in hash functions

Examples of popular hash functions

m MD5: n =128
m Published by Ron Rivest in 1992
m Successor of MD4 (1990)
m SHA-1: n =160
m Designed by NSA, standardized by NIST in 1995
m Successor of SHA-0 (1993)
m SHA-2: family supporting multiple lengths

m Designed by NSA, standardized by NIST in 2001
B 4 members named SHA-n
m SHA-224, SHA-256, SHA-384 and SHA-512
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L Mainstream symmetric crypto today
Internals

The chaining structure: Merkle-Damgard

m Simple iterative construction:
m iterative application of compression function (CF)

m Proven collision-resistance preserving

| Inp | | ut S | | trin | |g+padding|
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L Mainstream symmetric crypto today
Internals

Merkle-Damgard strengthening

m Input length added to the input string

| Inp | | ut S | | trin | |g||m|..|
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L Mainstream symmetric crypto today
Internals

Enveloped Merkle-Damgard

m Special processing for last call

| Inp | | ut S | | trin | |g||m|.4|
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L Mainstream symmetric crypto today
Internals

Variable-output-length Merkle-Damgard

m Mask generating function (MGF)
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L Mainstream symmetric crypto today
Internals

The compression function: Davies-Meyer (nearly)

Message expansion

(@}
<
Y

Data path » CV

Uses a block cipher:
m Separated data path and message expansion

But not one-way!
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L Mainstream symmetric crypto today
Internals

The compression function: Davies-Meyer

Message expansion

(@}
<
Y

Data path

» CV

Y

Uses a block cipher:

m Separated data path and message expansion

Some feedforward due to Merkle-Damgard
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L Mainstream symmetric crypto today
Internals

Combining them all

m A block cipher in a very complex mode of use...
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L Mainstream symmetric crypto today
Other uses of block ciphers

Other uses of block ciphers

m Hashing (as discussed) and its modes HMAC, MGF1, ...

m Block encryption: ECB, CBC, ...
m Stream encryption:

m synchronous: counter mode, OFB, ...
m self-synchronizing: CFB

m MAC computation: CBC-MAC, C-MAC, ...
m Authenticated encryption: OCB, GCM, CCM ...
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Other uses of block ciphers
The truth about symmetric crypto today

Block ciphers:
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L Mainstream symmetric crypto today
Back to mainstream hash functions

Back to mainstream hashing: the basic operations

m All popular hash functions were based on ARX

m addition modulo 2" with n = 32 (and n = 64)

m bitwise addition: XOR

m bitwise shift operations, cyclic shift

B security: “algebraically incompatible operations”
®m ARX would be elegant

m ..but silently assumes a specific integer coding

m ARX would be efficient
m ..but only in software on CPUs with n-bit words

m ARX would have good cryptographic properties

m but is very hard to analyze
m ..attacks have appeared after years
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Mainstream symmetric crypto today
A crisis of confidence

Trouble in paradise

1991-1993: Den Boer and Bosselaers attack MD4 and MD5
1996: Dobbertin improves attacks on MD4 and MD5
1998: Chabaud and Joux attack SHA-0

2004: Joux et al. break SHA-0

2004: Wang et al. break MD5

2004: Joux show multicollisions on Merkle-Damgard
2005: Lenstra et al., and Klima, make MD5 attack practical
2005: Wang et al. theoretically break SHA-1

2005: Kelsey and Schneier: 2nd pre-image attacks on MD
2006: De Canniere and Rechberger further break SHA-1
2006: Kohno and Kelsey: herding attacks on MD
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LThe SHA-3 contest
NIST calls out for help

A way out of the hash function crisis

B 2005-2006: trust in established hash functions was
crumbling, due to
m use of ARX
m adoption of Merkle-Damgard
m and SHA-2 were based on the same principles

Bm 2007: NIST calls for SHA-3

m similar to AES contest
m a case for the international cryptographic community!
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The deal

SHA-3 contest

m Open competition organized by NIST
m NIST provides forum
m scientific community contributes: designs, attacks,
implementations, comparisons
m NIST draws conclusions and decides

m Goal: replacement for the SHA-2 family
B 224, 256, 384 and 512-bit output sizes
m other output sizes are optional

B Requirements

m security levels specified for traditional attacks

m each submission must have
B complete documentation, including design rationale
m reference and optimized implementations in C
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Time schedule
SHA-3 time schedule

B January 2007: initial call

m October 2008: submission deadline

m February 2009: first SHA-3 conference in Leuven
B Presentation of 1st round candidates

m July 2009: NIST announces 2nd round candidates

m August 2010: second SHA-3 conference in Santa Barbara

m cryptanalytic results
m hardware and software implementation surveys
® new applications

m Dec. 2010: finalists are Blake, Grgstl, JH, KEccAk and Skein
m March 2012: final SHA-3 conference
m October 2, 2012: and the winner is: KECCAK
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L Hash function security requirements
Traditional requirements

Traditional security requirements of hash functions

m Function h from Z; to Z}

[ mputstring

m Security requirements
m pre-image resistance
® 2nd pre-image resistance
m collision resistance
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L Hash function security requirements
Traditional requirements

Pre-image resistance

m Giveny € Z}, find x € Z; such that h(x) =y
m Example: given derived key K; = h(K]|1), find master key K

72468F3DC94

m There exists a generic attack requiring about ...7... calls to h
® Requirement: there is no attack more efficient
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L Hash function security requirements
Traditional requirements

Pre-image resistance

m Giveny € Z}, find x € Z; such that h(x) =y
m Example: given derived key K; = h(K]|1), find master key K

72468F3DC94

m There exists a generic attack requiring about 2" calls to h
® Requirement: there is no attack more efficient
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L Hash function security requirements
Traditional requirements

2nd pre-image resistance

m Given x € Z3, find x’ # x such that h(x") = h(x)
m Example: signature forging

m given M and sign(h(M)), find another M’ with equal
signature

72468F3DC94

Example of input

m There exists a generic attack requiring about ...7... calls to h
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L Hash function security requirements
Traditional requirements

2nd pre-image resistance

m Given x € Z;, find x’ # x such that h(x') = h(x)
m Example: signature forging

m given M and sign(h(M)), find another M’ with equal
signature

72468F3DC94

Example of input

m There exists a generic attack requiring about 2" calls to h
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L Hash function security requirements
Traditional requirements

Collision resistance

m Find x; # x, such that h(x;) = h(x,)

x1?

x2?

m There exists a generic attack requiring about ...7... calls to h
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L Hash function security requirements
Traditional requirements

Collision resistance

m Find x; # x, such that h(x;) = h(x,)

x1?

x2?

m There exists a generic attack requiring about 2"/2 calls to h
m Birthday paradox: among 23 people, two have the same
birthday (with 50% probability)
m Scales as /|range| = 2"/2
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L Hash function security requirements
Additional requirements

Other requirements

m What if we use a hash function in other applications?

m To build a MAC function, e.g., HMAC (FIPS 198)
m To destroy algebraic structure, e.g.,

m encryption with RSA: OAEP (PKCS #1)

B signing with RSA: PSS (PKCS #1)
m Problem:

m additional requirements on top of traditional ones
m how to know what a hash function is designed for?
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L Hash function security requirements
The challenge of expressing security claims

Contract

m Security of a concrete hash function h cannot be proven
B sometimes reductions are possible...
m rely on public scrutiny!
m Security claim: contract between designer and user
B security claims > security requirements
m attack that invalidates claim, breaks h!
m Claims often implicit
m e.g., the traditional security requirements are implied
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L Hash function security requirements
The challenge of expressing security claims

List of claimed properties

m Security claims by listing desired properties

m collision resistant
(2nd) pre-image resistant
correlation-free
resistant against length-extension attacks
chosen-target forced-prefix pre-image resistance
m ..

m But ever-growing list of desired properties
® Moving target as new applications appear over time

But hey, the ideal hash function exists!
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L Hash function security requirements
Random oracles (RO)

Random oracle RO

m A random oracle [Bellare-Rogaway 1993] maps:
m message of variable length
B to an infinite output string

m Supports queries of following type: (M, /)
m M: message
m /: requested number of output bits

B Response Z

m String of ¢ bits
m Independently and identically distributed bits
m Self-consistent: equal M give matching outputs
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L Hash function security requirements
Random oracles (RO)

Compact security claim

m Truncated to n bits, RO has all desired properties, e.g.,

m Generating a collision: 2"/2
m Finding a (2nd) pre-image: 2"
m And [my chosen requirement]: f(n)

m Proposal for a compact security claim:
m “My function h behaves as a random oracle”

m Does not work, unfortunately
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L Hash function security requirements
The finite memory

Iterated hash functions

m All practical hash functions are iterated

B Message M cut into blocks My, ..., M,
m g-bit chaining value

m Output is function of final chaining value
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L Hash function security requirements

The finite memory

Internal collisions!

ML/\ ML/\
F F
Ccv CcVv CcVv
_/ _/
M~ M=
L/‘\ W N
F F
CcVv CcV CcVv
_/ _/

LN b
F F F
cvV ([&\Y) (&Y

m Difference inputs M and M’ giving the same chaining value

m Messages M||X and M’||X always collide for any string X
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L Hash function security requirements
The finite memory

Trouble in paradise

B 2004: Joux show multicollisions on Merkle-Damgard
m 2005: Kelsey and Schneier: 2nd pre-image attacks on MD
m 2006: Kohno and Kelsey: herding attacks on MD

m All due to internal collisions
m Narrow pipe means g = n
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L Hash function security requirements
The finite memory

How to deal with internal collisions?

m RO has no internal collisions

m If truncated to n bits, it does have collisions, say M and M’
m But M||X and M'||X collide only with probability 2—"
m Random oracle has “infinite memory”

m Abandon iterated modes to meet the RO ideal?

® In-memory hashing, non-streamable hash functions?
m Model for finite memory, internal collisions!
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L Hash function security requirements
The finite memory

Variable output-length functions

m Variable-length output:

m Single function for different hash function lengths
m Useful, e.g., for signatures, “mask generating functions”
m Stream cipher

m Exponential scaling of the security requirements?!?

Pre-image resistance 2"?
2nd pre-image resistance | 2" ?
Collision resistance 2727
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L Hash function security requirements
Towards a compact security claim

How to have a compact security claim?

m Try to define some thing I1 that
m has the same interface as RO
m behaves like RO ..
m ..modulo internal collisions
m Strength of I'T depends on some (size) parameters
m Compact security claim would then be:
m “My function h behaves as a IT with given size parameters”

m Output length no longer appears in security claim
m What could IT be?
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The sponge construction
The sponge construction
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m r bits of rate
m c bits of capacity
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LSponge functions
Random sponges

Random sponges

m Random T-sponge

m fchosen randomly from (2r+c)2r+c transformations
®m Random P-sponge

m fchosen randomly from (2¢)! permutations

®m Random sponges become our reference I1

Like a random oracle below 2¢/2

Random sponge functions are secure against attacks with
<22 calls to f




Permutation-based symmetric cryptography and Keccak
Sponge functions
Flat sponge claim

Flat sponge claim

Simplifying the claim to a single parameter

Flat sponge claim with claimed capacity ¢

The success probability of any attack on h satisfies:

2

<p —
IZr(success) < R(t:)(success) + o

with
B Prro(success): of that attack on a random oracle
m N: attack workload expressed as number of calls to f.
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LSponge functions
Flat sponge claim

What does a flat sponge claim state?

Example: ¢ = 256
m N2/2%57 becomes significant when N =~ 2128

Collision-resistance:

m Similar to that of random oracle up to n = 256
m Maximum achievable security level: 222

(2nd) pre-image resistance:

m Similar to that of random oracle up to n = 128
m Maximum achievable security level: 22

Flat sponge claim forms a ceiling to the security claim
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LSponge functions
The NIST SHA-3 requirements

The NIST SHA-3 security requirements

Output length 224 256 384 512
Collision resistance 2112 2128 2192 2256
Pre-image resistance 9224 2256 2384 21
2nd pre-image resistance | 2224/¢ 2%6/¢ 2384/¢ 252/¢

¢ = message length
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LSponge functions
Design strategy

Designing a hash function

m What about using the sponge construction as mode of
operation?
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L Sponge functions

Design strategy

The hermetic sponge strategy

M Z
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absorbing : squeezing

sponge

Hermetic sponge strategy

Adopting the sponge construction and building an permutation
f that should not have any structural distinguishers.
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EThe beginning

The beginning

m SUBTERRANEAN: Daemen (1991)

m variable-length input and output
m hashing and stream cipher
m round function interleaved with input/output

STEPRIGHTUP: Daemen (1994)

PANAMA: Daemen and Clapp (1998)
RADIOGATUN: KECCAK team (2006)

m experiments did not inspire confidence in RADIOGATUN
m NIST SHA-3 deadline approaching ...
m U-turn: design a sponge with strong permutation f

KECCAK (2008)
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EDeﬁning KECCAK

Designing the permutation KECCAK-f

Our mission

To design a permutation called KEccAk-f that cannot be
distinguished from a random permutation.

m Classical LC/DC criteria

m absence of large differential propagation probabilities
m absence of large input-output correlations

B Immunity to
m integral cryptanalysis
m algebraic attacks
m slide and symmetry-exploiting attacks
m ..
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EDeﬁning KECCAK

Designing the permutation KECCAK-f

m Permutation width b?
m long term: security strength up to 256 bits
B capacity up to 512 bits
m rate: r = b — 512 bits
m width ranges from 600 to 2400 bits

m Like a block cipher

m sequence of identical rounds

m round function that is nonlinear and has good diffusion
m ..but not quite

m no need for key schedule
m round constants instead of round keys
m inverse permutation need not be efficient
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EDeﬁning KECCAK

KECCAK

m Instantiation of a sponge function
m KECCAK uses a permutation KECCAK-f
m 7 permutations: b € {25, 50,100, 200, 400, 800, 1600 }

m Security-speed trade-offs using the same permutation
m Examples

m SHA-3: r = 1024 and ¢ = 576 for 2/ = 228 security
m lightweight: r = 40 and ¢ = 160 for 2¢/2 = 28 security
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Inside KECCAK-f

The state: an array of 5 x 5 x 2 bits

state
Yy k z
X

m 5 x 5 lanes, each containing 2¢ bits (1, 2, 4, 8, 16, 32 or 64)
m (5 x 5)-bit slices, 2¢ of them
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Inside KECCAK-f

The state: an array of 5 x 5 x 2 bits

lane
yZ
X

m 5 x 5 lanes, each containing 2¢ bits (1, 2, 4, 8, 16, 32 or 64)
m (5 x 5)-bit slices, 2¢ of them
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Inside KECCAK-f

The state: an array of 5 x 5 x 2 bits

slice
yZ
X

m 5 x 5 lanes, each containing 2¢ bits (1, 2, 4, 8, 16, 32 or 64)
m (5 x 5)-bit slices, 2¢ of them
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Inside KECCAK-f

The state: an array of 5 x 5 x 2 bits

row
yk z
X

m 5 x 5 lanes, each containing 2¢ bits (1, 2, 4, 8, 16, 32 or 64)
m (5 x 5)-bit slices, 2¢ of them
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Inside KECCAK-f

The state: an array of 5 x 5 x 2 bits

column
Yy \ z
X

m 5 x 5 lanes, each containing 2¢ bits (1, 2, 4, 8, 16, 32 or 64)
m (5 x 5)-bit slices, 2¢ of them
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EInside KECCAK-f

X, the nonlinear mapping in KEcCAK-f

T
BB

§ &S5 5o

Trrry

m “Flip bit if neighbors exhibit 01 pattern”

m Operates independently and in parallel on 5-bit rows
m Algebraic degree 2, inverse has degree 3
m LC/DC propagation properties easy to describe and analyze
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EInside KECCAK-f

6’, a first attempt at mixing bits

m Compute parity ¢y, of each column
m Add to each cell parity of neighboring columns:

bx,y,z =Axy,z @D Cx—1,7 D Cx41,2

1 column parity
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EInside KECCAK-f

Diffusion of @’
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EInside KECCAK-f

Diffusion of 6’ (kernel)
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EInside KECCAK-f

Diffusion of the inverse of 6’
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Inside KECCAK-f

p for inter-slice dispersion

m We need diffusion between the slices ...
m p: cyclic shifts of lanes with offsets

1)/2 mod 2!

+

i(i

m Offsets cycle through all values below 2°
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EInside KECCAK-f

1 to break symmetry

m XOR of round-dependent constant to lane in origin
m Without ¢, the round mapping would be symmetric
m invariant to translation in the z-direction

m Without ¢, all rounds would be the same

m susceptibility to slide attacks
m defective cycle structure

m Without ¢, we get simple fixed points (000 and 111)
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EInside KECCAK-f

A first attempt at KECCAK-f

m Round function: R=10p08 oy
m Problem: low-weight periodic trails by chaining:

B )X: may propagate unchanged

m 0': propagates unchanged, because all column parities are 0
m p: in general moves active bits to different slices ...

m ..but not always
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Inside KECCAK-f

The Matryoshka property

m Patterns in Q' are z-periodic versions of patterns in Q
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EInside KECCAK-f

7t for disturbing horizontal/vertical alignment
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EInside KECCAK-f

A second attempt at KECCAK-f

m Round function: R=1o0mopof oy

m Solves problem encountered before:

m 7T moves bits in same column to different columns!
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EInside KECCAK-f

Tweaking 6’ to 60
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EInside KECCAK-f

Inverse of 9

m Diffusion from single-bit output to input very high
m Increases resistance against LC/DC and algebraic attacks
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E KECCAK-f summary

KECCAK-f summary

m Round function:
R=10xo0 7rop09

m Number of rounds: 12 + 2/

m KeccAk-f[25] has 12 rounds
m KECCAK-f[1600] has 24 rounds

m Efficiency

high level of parallellism

flexibility: bit-interleaving

software: competitive on wide range of CPU
dedicated hardware: very competitive

suited for protection against side-channel attack
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LApplications
Straightforward applications

How to use a sponge function?

Padded message Hash
A
] Y (M) Y (M) Y 4 )
I I &> >
0 f f fl .. f f
> > > —> >
I N N Y

m For regular hashing
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LApplications
Straightforward applications

How to use a sponge function?

Salt Padded message Hash
A
Ty Oy Oy v M)
O+ (O 1O &> >
0 f f fl. f f
= . . — =
I N N O

m For salted hashing
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LApplications
Straightforward applications

How to use a sponge function?

Salt | message | 0'00%000.000 Hash
A
miNaYNaY IS
S o |- o> H
o[ F[ET &7 f FF
> > > —> >
LU Y ,

m For salted hashing, as slow as you like it
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LApplications
Straightforward applications

How to use a sponge function?

Key Padded message MAC
A
] 4 M) 4 ) Y Y (M)
I I &> >
0 f f fl .. f f
> > > —> >
I N O

m As a message authentication code
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LApplications
Straightforward applications

How to use a sponge function?

Key | IV Key stream
A A A
Iy vy | M
D> D> > > >
0 f f f f f
> > > > —»
I N N %

m As a stream cipher
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LApplications
Straightforward applications

How to use a sponge function?

Var.-length input Variable-length output
A A A
v (M y v O M
O 1D O o H >
0 f fl.. f f f f
= = — = £ —
I N AN

m As a mask generating function [PKCS#1, IEEE Std 13632l
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LApplications
The duplex construction

MAC generation with a sponge
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(=]
=

|
He— =

)
De— =
A\

)
Pe— =
A\

)
Pe— =
Y

) -

Y

» >

absorbing\:/squeez'mg



Permutation-based symmetric cryptography and Keccak
LApplications
The duplex construction

Encryption with a sponge

C, C, C,
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LApplications
The duplex construction

Both encryption and MAC?
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LApplications
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The duplex construction
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m Object: D = pupLEX|f, pad, r]

m Requesting ¢-bit output Z = D.duplexing(c, ¢)
m input ¢ and output Z limited in length
m Z depends on all previous inputs
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Authenticated encryption

m Functionality:

m Tag computation over data header and data body

m Encryption of body into cryptogram, diversified by header
m Wrapping:

m Input: key, data header and body

m Output: tag and cryptogram
m Unwrapping

® Input: key, data header and cryptogram, tag

m Output: cryptogram or error message if tag is invalid
m Security requirements

m Tag forgery infeasibility

m Plaintext recovery infeasibility
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The SpongeWrap mode
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m Key K, data header A and data body B of arbitrary length
m Supports intermediate tags
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Reseedable pseudorandom bit generator
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Requirements:
m Seeding and reseeding
m Pseudo-random output depends on all past seeds
m Forward secrecy
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What textbooks and intro’s should say from now on:-)

Symmetric cryptographic primitives:
m Permutations
m Block ciphers

m Stream ciphers
m Hash functions
m Non-keyed
m Keyed: MAC functions

And their modes-of-use
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Questions?

Thanks for your attention!

Q?

More information on
http://sponge.noekeon.org/
http://keccak.noekeon.org/


http://sponge.noekeon.org/
http://keccak.noekeon.org/
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