
Automatic mangling rules generation

Simon Marechal (bartavelle at openwall.com)
http://www.openwall.com

@Openwall

December 2012

http://www.openwall.com

Mangling rules ?

I First seen in Crack

I Transform (or reject) a dictionary word
I Almost all major tools use a language derived from Crack’s

I Look at hashkill’s language for a fancy exception !

A John the Ripper default ruleset

<* >2 !?A l $[2!37954860.?]

This ruleset is processed into 12 rules, one for each character between the brackets, such
as:

<* >2 !?A l $2

This will reject the word unless it is shorter than the maximum length, is of at least two
characters long, and is purely alphabetic. If the word is not rejected, this rule will
convert the word to all-lowercase, and append the character ”2”.

S. Marechal (Openwall) Automatic mangling rules generation December 2012 2 / 24

John the Ripper mangling rule language

John the Ripper has one of the most complete languages:

I Preprocessor

I All kinds of substitutions, insertions, deletions

I Duplicate, reflect, pluralize . . .

I Memory access commands (recently also in hashcat)

I Word rejection rules, as well as rule rejection flags

I And many others

It can emulate most of other tools specific rules using multiple rules

S. Marechal (Openwall) Automatic mangling rules generation December 2012 3 / 24

Converting rules between engines

The manglingrules library – http://openwall.info/wiki/john/rulesfinder

I Only converts between hashcat and John the Ripper
I Does not convert bitwise shifts, ASCII increments, or ’q’

I Possible, but clunky

I But should convert everything else

S. Marechal (Openwall) Automatic mangling rules generation December 2012 4 / 24

http://openwall.info/wiki/john/rulesfinder

The problem

How to automatically generate a good set of mangling rules ?

I Machine learning problem

I Given a training set and wordlist, generate the mangling rules

I Good means that it cracks the passwords in the test sets

S. Marechal (Openwall) Automatic mangling rules generation December 2012 5 / 24

Requirements

I Training set (list of cleartext passwords)
I Full rockyou (32.6M entries)
I Rockyou without dupes (14.3M entries)

I Training wordlist
I Wikipedia-sraveau (58.4M entries)
I Lowercase dictionary (same as above, filtered, 24.4M entries)

I Test set: the 2012 Yahoo Contributor Network leak
I 453491 distinct passwords
I 342514 unique passwords
I Unique passwords used, to reduce biases (and introduce new ones, hopefully less

problematic)

S. Marechal (Openwall) Automatic mangling rules generation December 2012 6 / 24

Näıve algorithm

1. For each element of the training set
I Find the closest word in the wordlist
I Compute the shortest mutation rule that goes from one to the other

2. Compute how many passwords each rule cracks

3. Sort them by effectiveness

4. ???

5. Profit !

The only problem is that these steps are either hard to define or too computationally
expensive . . .

S. Marechal (Openwall) Automatic mangling rules generation December 2012 7 / 24

Hard problems

I How to find the closest word ?

I How to find the shortest mutation rule ?

I Why just the closest word ?

I Why just one rule ?

I What if several rules crack the same password ?

I How to sort the rules ?

S. Marechal (Openwall) Automatic mangling rules generation December 2012 8 / 24

The model

I Someone chooses a base word,

I mangles it,

I then appends and prepends optional stuff.

Real world example

I Choose a base word → linkedin

I Leetify → l1nk3d1n

I Append/prepend stuff → g0l1nk3d1n!

Which weakness of this model is demonstrated here ? The user certainly added ”go”
before leetifying.

S. Marechal (Openwall) Automatic mangling rules generation December 2012 9 / 24

Selected algorithm

I Start with a list of mangling rules
I Hand picked, computed or randomly generated

I Mangle the wordlist
I For each element of the training set

I Find the largest substring that matches the mangled words
I Compute appends/prepends

I Only keep the best full rules (base rule + appends/prepends)

I Rank the rules by number of passwords cracked (not yet by efficiency)

S. Marechal (Openwall) Automatic mangling rules generation December 2012 10 / 24

Picking rules

2789 reasonably useful rules right now

I From known sets

I Exhaustive application of single rules (overstrike, insert, etc.)

I A few combinations of base rules

I Several underperforming rules that need to be pruned

I Obviously no append/prepend rule

Note that it is a good (and easy) idea to steal rules from others !

S. Marechal (Openwall) Automatic mangling rules generation December 2012 11 / 24

Mangling / searching for the substring

The wordlist is mangled with JtR, and is fed into the search program, which:
I Loads the mangled data

I Computes CityHash1 and a rolling hash2 for each word
I Populates two Bloom filters with the two results
I Stores each entry in an AVL tree (sorting by CityHash)

I For each cleartext, finds the largest substring matching the mangled data
I No good algorithm that does exactly this
I Using N rolling hashes, for matches at most N characters long

I Finds and stores prefixes and suffixes

Optimized for efficiency: no disk access after initial loading, resides in available memory

1http://code.google.com/p/cityhash/
2Actually not a ”real” rolling hash, but serves the same purpose
S. Marechal (Openwall) Automatic mangling rules generation December 2012 12 / 24

http://code.google.com/p/cityhash/

Compiling rules

Example:

I Rule T0, cleartext ”Pass123”

I The dictionary word ”pass” is mangled into ”Pass”

I It is the longest match in our cleartext ”Pass123”

I Thus, the rule T0 Az"123" cracks ”Pass123”

All these rules are collected for all plaintexts, and (rule, cleartext3) pairs are stored on
disk. Then a second pass uses this to build a list of pairs (unique rule, list of
cleartexts).

3Actually its index
S. Marechal (Openwall) Automatic mangling rules generation December 2012 13 / 24

Ranking the rules

Start with a list of pairs (unique rule, list of cleartexts), then

1. Sort it by the size of the cleartexts list

2. Take the top rule

3. Remove the cleartexts cracked by this rule from the others

4. Rinse and repeat

This is a greedy approximation of the optimal solution of the maximum coverage
problem

S. Marechal (Openwall) Automatic mangling rules generation December 2012 14 / 24

Other approaches – best64 challenge

Hashcat competition using the phpbb.com leak as training AND validation set, and ”top
10k” as the wordlist

I Had all my toolset ready at the time, but was a wake-up call (only would have
achieved 7th place)

I Found tons of omissions, bugs in rule list
I Arex1337 won using a method pretty similar to what is described here

I without append/prepend detection
I a lot of automatic rule generation
I probably poor runtime performance (PHP + MySQL), but sufficient for the task
I Many ugly rules in the winning set : $2$4]]
I Ok, maybe only the last step was similar . . .

S. Marechal (Openwall) Automatic mangling rules generation December 2012 15 / 24

Benchmarking

Cracking the July 2012 Yahoo leak, using rockyou and wikipedia-sraveau as wordlists

Rules trained as described previously

Identifier Training set Training wordlist

Rockyou Rockyou wikipedia-sraveau

Rockyou unique Rockyou (unique) wikipedia-sraveau

Lower dict. Rockyou (unique) wikipedia-sraveau, lowercased and cleaned

And also, appearing as dotted lines in the figures:

I JtR ”jumbo” rules
I Hashcat best64
I Hashcat ”generated”

I Hashcat ”d3ad0ne”

I Arex1337 best80

S. Marechal (Openwall) Automatic mangling rules generation December 2012 16 / 24

Using rockyou as the wordlist

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 100 200 300 400 500

Rockyou
Lower dict.

Rockyou unique
Hashcat best 64

Arex1337 best 80
hashcat generated

passwordpro
JtR jumbo rules

d3ad0ne

Figure: Passwords cracked per mangling rules processed

S. Marechal (Openwall) Automatic mangling rules generation December 2012 17 / 24

Using rockyou as the wordlist – 64 rules

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 10 20 30 40 50 60

Rockyou
Lower dict.

Rockyou unique
Hashcat best 64

Arex1337 best 80
hashcat generated

passwordpro
JtR jumbo rules

d3ad0ne

Figure: Passwords cracked per mangling rules processed

S. Marechal (Openwall) Automatic mangling rules generation December 2012 18 / 24

Using wikipedia as the wordlist

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100 200 300 400 500

Rockyou unique
Rockyou

Hashcat best 64
Lower dict.

Arex1337 best 80
passwordpro

hashcat generated
JtR jumbo rules

d3ad0ne

Figure: Passwords cracked per mangling rules processed

S. Marechal (Openwall) Automatic mangling rules generation December 2012 19 / 24

Using wikipedia as the wordlist – 64 rules

 0.1

 0.15

 0.2

 0.25

 0.3

 10 20 30 40 50 60

Rockyou unique
Rockyou

Hashcat best 64
Lower dict.

Arex1337 best 80
passwordpro

hashcat generated
JtR jumbo rules

d3ad0ne

Figure: Passwords cracked per mangling rules processed

S. Marechal (Openwall) Automatic mangling rules generation December 2012 20 / 24

Conclusions

I The toolset is satisfying
I Project page: http://openwall.info/wiki/john/rulesfinder
I Includes the (undocumented and ugly) benchmarking scripts used to create the figures
I Look out for memory usage !

I Could still be optimized
I Runtime optimization : pre-apply known best rules
I Performance optimization : add more effective base rules, sort rules by tests/cracks

ratio

I Against this kind of passwords
I JtR default rules need an overhaul4

I Hashcat best64 is good, but only has 64 rules

4Please note that rejection rules were not taken into account in the figures
S. Marechal (Openwall) Automatic mangling rules generation December 2012 21 / 24

http://openwall.info/wiki/john/rulesfinder

Bonus – good rules are strange to look at

1. :

2. $1

3.]

4. S

5. D3

6. $2

7. Az"123"

8. c

9. D5

10. Az"12"

11. D2

12. $3

13. $7

14. Az"13"

15. D4

16. Az"11"

17. $5

18. [

19. Az"22"

20. Az"23"

21. Az"01"

22. Az"21"

23. Az"07"

24. $4

25. A0"1"

26. } } [[

27. Az"10"

28. Az"14"

29. Xm1z

30. Az"08"

31. Az"06"

32. Az"15"

33. $8

34. [A0"j"

35. r

36. Az"69"

37. $6

38. Az"16"

39. Az"18"

40. $9

41. $!

42. S $1

43. Az"17"

44. } } } }
45. Az"24"

46. Az"05"

47. [A0"m"

48. Az"09"

49. Az"88"

50. l p

51.] d

52. c $1

S. Marechal (Openwall) Automatic mangling rules generation December 2012 22 / 24

Final steps

Before being usable, the rules list must be processed. Each line looks like :

: Az"1" NBPWD=169049

I The NBPWD=169049 indicates how many passwords this rule cracked in the training
set, but must be removed before the rule is used by John the Ripper

I Some rules could be optimized, for example [A0"m" could be written o0m

I In order to be usable by another tool, some rules will need to be converted

The manglingrules library previously discussed can help with that, but is still
experimental. It can:

I Parse most hashcat and JtR rules (it lacks some JtR preprocessor directives, and
the most recent hashcat rules) into its internal representation

I Optimize this internal representation based on a simple pattern system

I Convert the rules to the JtR or hashcat flavor

S. Marechal (Openwall) Automatic mangling rules generation December 2012 23 / 24

Questions?

http://www.openwall.com

bartavelle at openwall.com

S. Marechal (Openwall) Automatic mangling rules generation December 2012 24 / 24

http://www.openwall.com

