
1

Hashing Algorithms:
The Good, the Bad, and the Fail

Steve Thomas “Sc00bz”

Passwords^12

TobTu.com/passwords12

2

Ranked Password Authentication

 scrypt

 bcrypt ($2y$)

 PHPass & SHA2 based crypt

 PBKDF2

 MD5 crypt (1)

 Single hash

 Almost anything with DES

 MySQL323

 XSHA1

 Selectable memory

 4 KiB internal state

 Sequential hashing 32/64 bit

 *Never* implemented correctly

 Fixed 1002 rounds of MD5

 Fast usually unsalted

 LM, crypt DES (only 64 bits)

 Meet-in-the-middle attack

 Any 20 character PW in .5 sec

3

Public Service Announcement

 Why you should not use LastPass

Recommends 500 round PBKDF2

Unencrypted URL field

Hushmail-ish attack

 KeePass with DropBox or Google Drive

 Host your own “LastPass”

4

How much salt and pepper do we

need?

 “4”

 Public

 For logging in

 “hash(username + domain + password)”

 “Private” salt (stored in the database)

 No targeted precomputed attacks

 Encryption key (stored on the auth server)

 Database dumps are worthless

 Site specific ROM

5

Site Specific ROM

 TBs of random data

 Salted password gives an offset into the ROM

 An attacker needs to download a large part of

the ROM to start cracking passwords

 Easier detection of intruder

 10 Mbps

 max 4000 auths/s

 >9 days/TB

6

What to do About This

 NIST sponsored competition for “PBKDF3”

Standard for storing credentials

Forced minimum iteration count

Upgrade paths without the password

 For authentication

Parallel

Memory Hard

7

Parallel vs. Memory Hard

 The more parallel you are the less

memory hard you are

8

My Best Effort

 1 function create_hash($pw, $salt, $count, $count2)

 2 {

 3 if ($count <= 0 || $count2 <= 0)

 4 return null;

 5

 6 $ret = hash($salt . $pw, true);

 7 // Upgrade path without the password

 8 for ($i = 0; $i < $count2; $i++)

 9 {

10 // Forced minimum iteration counts

11 $cur = hash(pack('NN', 0, $i) . $ret, true);

12 For ($j = 1; $j < 2048 * $count; $j++)

13 {

14 // Highly parallel operations

15 $cur ^= hash(pack('NN', $j, $i) . $ret, true);

16 }

17

18 $ret = hash($salt . $ret . $cur, true);

19 }

20

21 // "Standard" for storing credentials

22 return '$????$' . $count . '$' . $count2 . '$' . $salt . '$' . bin2hex($ret);

23 }

9

Pros/Cons

 Pros

 Forced minimum

iteration counts

 Parallel

 Authenticating with

GPUs

 Upgrade path without

the password

 Cons

 Site specific ROM

 Not memory hard

10

Thank You

 Questions?

