Hashing Algorithms:

The Good, the Bad, and the Fall

Steve Thomas “Sc00bz”
Passwords”12

TobTu.com/passwords1?2



Ranked Password Authentication

m Sscrypt m Selectable memory

m berypt ($2y9) m 4 KiB internal state

m PHPass & SHA2 based crypt m  Sequential hashing 32/64 bit

m PBKDF2 m *Never* implemented correctly
m MD5 crypt ($19%) m Fixed 1002 rounds of MD5

m Single hash m Fast usually unsalted

m  Almost anything with DES m LM, crypt DES (only 64 bits)

m MySQL323 m Meet-in-the-middle attack

m XSHAl1 m Any 20 character PW in .5 sec



" A
Public Service Announcement

m \WWhy you should not use LastPass
Recommends 500 round PBKDF2
Unencrypted URL field
Hushmail-ish attack

m KeePass with DropBox or Google Drive
m Host your own “LastPass”



= I
How much salt and pepper do we
need?

. “4”
Public

= For logging in
“hash(username + domain + password)”
“Private” salt (stored in the database)
= No targeted precomputed attacks

Encryption key (stored on the auth server)
s Database dumps are worthless

Site specific ROM



" J
Site Specific ROM

m TBs of random data
m Salted password gives an offset into the ROM

m An aftacker needs to download a large part of
the ROM to start cracking passwords

m Easier detection of intruder

m 10 Mbps
max 4000 auths/s
>9 days/TB



What to do About This

m NIST sponsored competition for “PBKDF3”
Standard for storing credentials
Forced minimum iteration count

Upgrade paths without the password
= For authentication

Parallel
Memory Hard



Parallel vs. Memory Hard

m The more parallel you are the less
memory hard you are



My Best Effort

1
2 {
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23}

function create hash($pw, $salt, S$count, S$count2)

if (Scount <= 0 || S$count2 <= 0)
return null;

Sret = hash($salt . $pw, true);
// Upgrade path without the password
for ($1i = 0; $1i < Scount2; S$Si++)
{
// Forced minimum iteration counts
Scur = hash(pack('NN', 0, $i) . Sret, true);
For ($3 = 1; $j < 2048 * Scount; $j++)
{
// Highly parallel operations
Scur ~= hash(pack('NN', $7j, $i) . Sret, true);

Sret = hash($salt . S$ret . S$cur, true);
}

// "Standard" for storing credentials
return '$??2?22$' . Scount . '$' . S$count2 . '$' . S$salt

lsl

bin2hex (Sret) ;



Pros/Cons
m Pros m Cons
Forced minimum Site specific ROM
iteration counts Not memory hard
Parallel
= Authenticating with
GPUs

Upgrade path without
the password



'_
Thank You

m Questions?



