mnemonic.)s

Memorahle & strong passphrases in
the browser

Yiorgis Gozadinos, Crypho AS

ggozad@crypho.com, ¥ @ggozad



crypho.com

Private and secure real-time team
collaboration.

@00 Crypho "
[B crypho.com ¢ |Reade ] @
Crypho My spaces ~ My contacts Messages (E) Help & instructions & Geir Bekholt ~
Members
' What's happening?
Home , Yiorgis Gozadinos
Geir Bakholt o ) ~ lweekago @ Geir Bzkholt
@ This lets us collaborate securely within a team, even with confidential documents.
— And we can easily invite people from other organisations.
Documents =] Alan Turing
Yiorgis Gozadinos 1 week ago
a | like the fact that it is real-time. The fastest i have seen.
Security

— But more importantly, it is end-to-end encrypted. More secure than any
comparable application.

Alan Turing 1 week ago

e | am impressed with the security level of this app

I'm glad the Germans didn't have this back in my days.

Yiorgis Cozadinos shared a file:

Information security essentials. pdf

Geir Bakholt 4 weeks ago
We can also post long messages

Including messages with links: Crypho website, files, photos and share documents.




We need to generate
passphrases!

Log in

Email address

Security code Send code via SMS

Enter the security code, from text message, or from
the authenticator app. If you need a new code, click
Send code via SMS

Passphrase

or, register a new account




Enter mnemonic.)s!

STRONG & MEMORABLE PASSPHRASES

e No obscure rules requiring special
symbols, numbers or length.

e Using memorable native-language
words (n=1626).

e Generated from random 32-bit integer
sequences (3 words/integer).



Examples

e 32-bit

confidence ourselves insult

decimal: 652372173
hex: 26e268cd

e 96-bit
mean yesterday gone size

walst lace endless apple

war

decimal: 24224384090962230467342891306
hex: 4e45f0dcedS5ecllc772£f£f92a

e ~10.6bits/word
Compare to:
~6.5bits/char for all ASCII and
~2bits/char for english words.



How does It work?

e encoding:

X mod n,

(x / n+ w[i,1]) mod n,
(x / n"2 + w[i,2]) mod n,

e decoding

w[i,1] dict.indexOf (word[i,1])
w[i,2] dict.indexOf (word[i,2])
w[i,3] dict.indexOf (word[i,3])

wli,1l] +
n((w[i,2] - w[i,1]) mod n) +
n"2 ((w[i,3] - w[i,2]) mod n)




How do | use it?

Create a new mnemonic

>>> m = new Mnemonic(96);
>>> m.toWords();

["grey", "climb", "demon", "snap", "shove", "fr
uit”, ”grasp”, llhumH, llselfll]

get the random UlInt32 sequence or the
hex

>>> m.random

[174975897, 171815469, 1859322123]
>>> m.toHex();
"0a6deb990a3db22d6ed3010b"

or reconstruct it from its words

>>> m = new Mnemonic(["grey", "climb", "demon",
"snap", "shove", "fruit", "grasp", "hum", "sel

£71)
>>> m.toHex();
"0a6deb990a3db22d6ed3010b"




Contact

Github:
https://github.com/ggozad/mnemonic.js

Crypho: http://crypho.com

Twitter @ggozad
ggozad@crypho.com



